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Universal behavior in an irreversible model with C5, symmetry
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We analyze the critical behavior of a two-dimensional irreversible cellular automaton whose dynamic rules
are invariant under the symmetry operations of the point gsp We study the dynamical phase transition
that takes place in the model and obtain the static and short-time critical exponents by the use of Monte Carlo
simulations. Our results indicate that the present model is in the same universality class as the three-state Potts
model.[S1063-651X99)04310-X

PACS numbes): 05.70.Ln, 05.50t+(q, 64.90+b

I. INTRODUCTION the same within numerical errors. We might say, therefore,
that lattice models invariant under the symmetries of the
Universality in nonequilibrium phase transitions, that is,group Cs, , irreversible or not, are in the same universality
in phase transitions between nonequilibrium steady states @fass of the(equilibrium) three-state Potts model. Although
ireversible systems, have been amply studied in recerthis statement has not been demonstrated, it would be pos-
years. Since the universal behavior depends only on a fewible to prove it by following a renormalization-group rea-
general properties and not on the details of a system, it i§oning similar to the one used by Grinsteinal. [1].
reasonable to expect that equilibrium and nonequilibrium We remark that in the present case of an irreversible sys-
models which exhibit the same symmetries fall into the saméem, as opposed to equilibrium models, the symmetry opera-
universality class. This statement, established by Grinsteitions are not defined as operations acting on a Hamiltonian
et al. [1] for systems withup-down symmetry (which in-  but as operations acting on the evolution operator, i.e., on the
cludes the well known Ising modelfollows from the renor-  dynamical rules.
malization group ird=4-— €. That is, they have shown that,
near the upper critical dimension, the irreversible parts of the
Langevin equation are irrelevant with respect to the stable
dynamical fixed point of the standard kinetic Ising model.  Consider a regular lattice ®f sites in which each site can
This irrelevance continues to hold in lower dimensions. Inpe in three states. At each time step, the state of the lattice is

fact, the proposition has been numerically verified for a largqpdated simultaneously according to the following local
number of model$2-10]. rules.

It has also been noticed that there is a universal behavior () If in the neighborhood of a given site there is a ma-

in the early stages of evolution of a dynamical system. ASority of sites which are in one state, then, independently of
predicted by Jansseet al. [11], when a system having a the state of the site, it changes to the state of the majority
relaxation dynamics is quenched from a temperature mucfyith probability p. It changes to one of the two other states
larger than the critical temperature to the critical temperaturgyith probability (1 p)/2.

there is an initial increase of the order parameter described () If no state is in majority, then the site assumes either
by a universal power law with a dynamic exponéhtThis  state with equal probability.

behavior is observed when the system is already in the mac- The state of the system can be represented by
roscopic short-time regime. The short-time universality has= (4, o,, ... o), wheres;=1, 2, or 3. LetP, (o) be the

been verified for spin systems as the dynamic Ising modebropability of states at time/ andw;(c|c') be the transi-

and Potts moddl12-19. In[20—23, the short-time dynam- tion probability per site. The time evolution equation of
ics analysis was performed to microscopically irreversiblep () is given by

models containing the same symmetries as the kinetic Ising
model. The calculated dynamic exponents are in agreement
with those of the kinetic Ising model universality class. We _ / /
point out here that the proposition introduced by Grinstein Prea(o) ; W(ala)PAa"), @
et al. [1] could be extended to comprehend the short-time
universality.

In this paper we propose an irreversible probabilistic ce
lular automaton which has the same symmetries as the three-
state Potts moddPR3]. We present a numerical study of the
static and dynamical critical properties of the model defined W((T|‘T'):l_i[ wi(aila") @
in a regular square lattice and we focus our attention mainly
on the determination of its short-time behavior. Our results
indicate that the critical exponents obtained here and thosis the transition probability from state’ to stateo, given
associated to the two-dimensional three-state Potts model atieat at the previous time step the system was in state

Il. THE MODEL

|where
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For the case of a square lattice, we write Again there is just one independent fourth-order invariant.
W(og|loq,05,03,04), Where the sites 1, 2, 3, and 4 are the The quantities of interest are the order parametede-
first neighbors of site 0. According to the local rules of thefined by
model, we have

m=(\12), ®
w;(1]111D) =w;(1]1112 =w;(1]|1113 =w;(1]|1123=p
(3)  thesusceptibilityy by

and x=N{(I2)—m?}, ©)
w;(1]1122 =w;(1|1133 =w;(1|2233 =1/3. (4)  and the reduced fourth-order cumulahtoy

The other rules are obtained by permutation of the neighbor- (1)
L : : U=1- : (10)
ing sites and by cyclic permutation of the states. 3(1,)2
The transition probabilityV(o|o') is invariant under cer-
tain symmetry operations, that i8/(Ro|Ro")=W(o|o "), According to the theory of finite-size scaling, these quan-
whereR is a symmetry operation. For the present model thetities obey the following scaling forms:
symmetry operations are those that act on all sites transform-

ing each of them in the same manner. One of the symmetry m (p)=L"#"m(eLY), (11
operations is the rotation operation-12, 2—3, and 3-1.
Another is the operator=23 with state 1 fixed. If the three xL(pP)=L""x(eL¥), (12)

states are placed on the vertices of an equilateral triangle,
they correspond, respectively, to a rotation operation by 12@nd
degrees and a specular operation. These symmetry opera- 5
tions define then the point group, . U(p)=U(eL™), (13
We remark that the dynamical rules so defined have the
same symmetries as the Hamiltonian of the three-state Potfgheree=p—p. is the deviation op from its critical value,
model, although in the present case the model is not defineshd m(x), x(x), andU(x) are universal functions. For an
by a Hamiltonian. infinite system these scaling forms give the behavior
~¢eP and y~ €. The exponenv is associated to the cor-
IIl. CRITICAL POINT relation length which diverges aé~¢ ”. The cumulant

U (p), defined in Eq(10), is expected to attain according to

~The system evolves in time according to the local rulesgq, (13) a universal value at the critical point, which does
given by Egs.(2)—(4) and eventually reaches a steady state,ot depend on the lattice size.

that can be of two types: a disordered steady state, where The simulation of the model is performed by applying the
there is an equal average number of sites in each one of thgeal rules in a synchronized way. We have considered
three Potts states; and an ordered steady state characterizgfl,are lattices and periodic boundary condition. Each simu-
by the predominance of sites in one of the Potts states.  |ation started with a configuration generated at random and
A convenient way to analyze the present model is throughyeraged over several simulations where taken to get the
the use of the variables final results. After a transient, which depends on the size of
N the system and of the value of paramegbeithe system at-
X =£< 2 S, a)_ﬂ) 5) tains a steady state. Our simulations show that the system
“ N\i=1 v 3)’ exhibits a continuous phase transition with the ordered
steady stateri#0) occurring at high values gi. As p is
where @ assumes the values 1, 2, and 3 af{d,y) is the  decreased, the transition takes place at a critical vplue
Kronecker delta. The property and the system becomes disordereu=0) for p less than
Pc-
X1+Xp+X3=0 Using the cumulant methd@4], the critical valuep, was
estimated. As we can see from Fig. 1, the curvedJef
> ) versusp, for different values ofL, intercept at the critical
_ It is useful also to mtroduce a set of homogeneouts f“nc'point p. estimated to be, = 0.888+ 0.002. Using the scaling
tions 1,(x1,Xz,%3), Of a given ordern, that are invariant e |ations for the order parameter and susceptibility, we have
under the symmetry operatioRdefined above. There is just oqiimated the ratio@/v and y/v. We found B/v=0.134
one independent second-order invariant given by +0.005 andy/v=1.74+0.02 , which are in agreement with
the results for théequilibrium) Potts model.

holds so that just two of them are independent.

1

I2=§(xf+x§+x§). (6)
IV. SHORT-TIME BEHAVIOR

The fourth-order invariant function is The short-time dynamic scaling relatiofisl] predict that

at the early stage of the evolution of a system, at criticality,

there is an initial increase of the order parameter that obeys a

1
l4== (X1 +Xa+X3). 7 . : . .
4=zt Xt xg) ™ power-law behavior with a universal exponent defined as

3
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FIG. 1. The cumulant_ versusp for square lattices with linear FIG. 2. Time evolution ofQ(t)/Q(0) for square lattices with
sizesL =10, 20, and 40. linear sized =9, 18, 36, and 72from bottom to top.

m(t) ~mot?, wheremy is the initial magnetization and is a
dynamical critical exponent. Numericall§ can be found
from this relation by preparing the system in a disordere
state with a very small magnetization. The exponent shoul
be evaluated by taking the limit &, goes to zer¢13-18§.

This exponent can also be evaluaf@d] by considering
the initial time evolution of the following correlation func-
tion:

cording to the local rules with the parameteffixed at its
Gcritical value p.=0.888 (evaluated according to the proce-
((jiure described in the preceding secjiowe calculated the
value of the dynamical quantities whose average giyéy
and M,(t) at each time step. The same procedure was re-
peated for a number of initial configurations from which the
averages were obtained at each time step.
Figure 2 shows the plot of the quanti§(t), defined in
Q(t) =(X,(t)X,(0)) (14)  Eq. (19, against the time, in a double-log scaleQ(t) in-
creases with time and has a power-law behavior that can be
with x,, defined in Eq.(5), and the average is over a distri- observed since the early times of the evolution even for
bution with zero correlation length and zero magnetizationsmall lattices. We see then that for the measuremer, of

The following power-law increase is expected: finite-size effects are not important and the slope of straight
lines fitted to the data points gives the exponentVe notice
Q(t)~t". (15  that for lattice sized. =18, the value ofg converges to a
. definite value, namely=0.093+ 0.004.
In the present work we calculatfrom this formula. In Fig. 3 we show the quantityl ,(t) versus time. In this
We alsq calculated the second moment of the order P&ase there appears a nonuniversal behavior in the beginning
rameter, given by times of the evolution. Discarding the first 20 initial time
3 steps, we see thi,(t) presents a power-law behavior, and
Ma=7(12).

So, according to the short-time scaling relations, at the criti-
cal point, we may expect the following power-law behavior:

M, (t)~1t¢ (16)
with S
=
1 2 g
{= —(d— —ﬂ), 1 =
A 14 £

whered is the dimension of the lattice arzds the dynamical
exponent associated to the time correlation length.

We performed numerical simulations and analyzed the
short-time behavior of the model. We used square lattices .
with sizesL=9, 18, 36, and 72. The total humber of inde- T2 4 6
pendent initial configurations was of the order of 1Bach In¢
initial configuration was generated by placing sites at state 1, FIG. 3. Second momem ,(t)/M,(0) as a function of time for
2, and 3 with equal probability and independent of eachsquare lattices with linear sizés=9, 18, 36, and 72from bottom
other. After that, we allow the system to evolve in time ac-to top).
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the slope of the straight lines fitted to the data points gives, imogeneous functions that are invariant under the symmetry
the plot of InM,(t) versust, the exponentZ=0.76:0.01.  operations of the grou@@,, . From these functions we define

Using the valueB/v, obtained in the preceding section, on the order parameter, the susceptibility, and the fourth-order
the relationz=(d—2/v)/{, we obtainz=2.28+0.04. The cumulqnt. Thg critical point and the s_tatic as well as 'ghe
errors inz were calculated by propagating the errorsgitv short—nme critical exponents were estlmat_ed by nymencal
and . This value ofz is in agreement with the values gf ~ Simulations on regular square lattices of different sizes and
for the three-state Potts model, obtained[#5]. So, the USing finite-size scaling theory. The values of the exponents
short-time universal behavior of the present model is consis2’® consistent with those of the two-dimensional three-state

tent with the short-time universal behavior of the kinetic POEIEzemgﬁ?rlérical results confirm that irreversible models
three-state Potts model.

with dynamics with the symmetries of the gro@y, and
defined in regular lattices are in the same universality class
V. SUMMARY as the(equilibrium) three-state Potts model defined in the
same regular lattices. Local irreversibility plays an irrelevant
We have investigated the critical behavior of a probabi-role in the critical behavior and is not a property that might
listic cellular automaton that does not have microscopic rechange the universality class of a given model. For the case
versibility and is defined by a dynamics that is invariantof Ising symmetry, such a principle has been demonstrated
under the symmetry operations of the point gr@@yy . The by showing the irrelevance of irreversible terms under the
kinetic phase transition that takes place, as the external paenormalization group near the upper critical dimengibh
rameterp is varied, is a continuous phase transition from aFor other symmetries, a similar renormalization-group ap-
disordered steady state at small valuespab an ordered proach could be used to demonstrate such a general prin-
steady state at high values pf We introduced a set of ho- ciple.
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