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Universal behavior in an irreversible model with C3v symmetry

Adriana Brunstein and Taˆnia Tomé
Instituto de Fı´sica, Universidade de Sa˜o Paulo, Caixa Postal 63618, 05315-970 Sa˜o Paulo, SP, Brazil

~Received 18 March 1999!

We analyze the critical behavior of a two-dimensional irreversible cellular automaton whose dynamic rules
are invariant under the symmetry operations of the point groupC3v . We study the dynamical phase transition
that takes place in the model and obtain the static and short-time critical exponents by the use of Monte Carlo
simulations. Our results indicate that the present model is in the same universality class as the three-state Potts
model.@S1063-651X~99!04310-X#

PACS number~s!: 05.70.Ln, 05.50.1q, 64.90.1b
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I. INTRODUCTION

Universality in nonequilibrium phase transitions, that
in phase transitions between nonequilibrium steady state
irreversible systems, have been amply studied in rec
years. Since the universal behavior depends only on a
general properties and not on the details of a system,
reasonable to expect that equilibrium and nonequilibri
models which exhibit the same symmetries fall into the sa
universality class. This statement, established by Grins
et al. @1# for systems withup-down symmetry ~which in-
cludes the well known Ising model!, follows from the renor-
malization group ind542e. That is, they have shown tha
near the upper critical dimension, the irreversible parts of
Langevin equation are irrelevant with respect to the sta
dynamical fixed point of the standard kinetic Ising mod
This irrelevance continues to hold in lower dimensions.
fact, the proposition has been numerically verified for a la
number of models@2–10#.

It has also been noticed that there is a universal beha
in the early stages of evolution of a dynamical system.
predicted by Janssenet al. @11#, when a system having
relaxation dynamics is quenched from a temperature m
larger than the critical temperature to the critical temperat
there is an initial increase of the order parameter descr
by a universal power law with a dynamic exponentu. This
behavior is observed when the system is already in the m
roscopic short-time regime. The short-time universality h
been verified for spin systems as the dynamic Ising mo
and Potts model@12–19#. In @20–22#, the short-time dynam-
ics analysis was performed to microscopically irreversi
models containing the same symmetries as the kinetic I
model. The calculated dynamic exponents are in agreem
with those of the kinetic Ising model universality class. W
point out here that the proposition introduced by Grinst
et al. @1# could be extended to comprehend the short-ti
universality.

In this paper we propose an irreversible probabilistic c
lular automaton which has the same symmetries as the th
state Potts model@23#. We present a numerical study of th
static and dynamical critical properties of the model defin
in a regular square lattice and we focus our attention ma
on the determination of its short-time behavior. Our resu
indicate that the critical exponents obtained here and th
associated to the two-dimensional three-state Potts mode
PRE 601063-651X/99/60~4!/3666~4!/$15.00
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the same within numerical errors. We might say, therefo
that lattice models invariant under the symmetries of
group C3v , irreversible or not, are in the same universal
class of the~equilibrium! three-state Potts model. Althoug
this statement has not been demonstrated, it would be
sible to prove it by following a renormalization-group re
soning similar to the one used by Grinsteinet al. @1#.

We remark that in the present case of an irreversible s
tem, as opposed to equilibrium models, the symmetry op
tions are not defined as operations acting on a Hamilton
but as operations acting on the evolution operator, i.e., on
dynamical rules.

II. THE MODEL

Consider a regular lattice ofN sites in which each site ca
be in three states. At each time step, the state of the lattic
updated simultaneously according to the following loc
rules.

~a! If in the neighborhood of a given site there is a m
jority of sites which are in one state, then, independently
the state of the site, it changes to the state of the majo
with probability p. It changes to one of the two other stat
with probability (12p)/2.

~b! If no state is in majority, then the site assumes eith
state with equal probability.

The state of the system can be represented bys
5(s1 ,s2 , . . . ,sN), wheres i51, 2, or 3. LetPl (s) be the
probability of states at time l andwi(sus8) be the transi-
tion probability per site. The time evolution equation
Pl (s) is given by

Pl 11~s!5(
s8

W~sus8!Pl ~s8!, ~1!

where

W~sus8!5)
i

wi~s i us8! ~2!

is the transition probability from states8 to states, given
that at the previous time step the system was in states8.
3666 © 1999 The American Physical Society
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For the case of a square lattice, we wr
w(s0us1 ,s2 ,s3 ,s4), where the sites 1, 2, 3, and 4 are t
first neighbors of site 0. According to the local rules of t
model, we have

wi~1u1111!5wi~1u1112!5wi~1u1113!5wi~1u1123!5p
~3!

and

wi~1u1122!5wi~1u1133!5wi~1u2233!51/3. ~4!

The other rules are obtained by permutation of the neighb
ing sites and by cyclic permutation of the states.

The transition probabilityW(sus8) is invariant under cer-
tain symmetry operations, that is,W(RsuRs8)5W(sus8),
whereR is a symmetry operation. For the present model
symmetry operations are those that act on all sites transfo
ing each of them in the same manner. One of the symm
operations is the rotation operation 1→2, 2→3, and 3→1.
Another is the operator 2
3 with state 1 fixed. If the three
states are placed on the vertices of an equilateral trian
they correspond, respectively, to a rotation operation by
degrees and a specular operation. These symmetry op
tions define then the point groupC3v .

We remark that the dynamical rules so defined have
same symmetries as the Hamiltonian of the three-state P
model, although in the present case the model is not defi
by a Hamiltonian.

III. CRITICAL POINT

The system evolves in time according to the local ru
given by Eqs.~2!–~4! and eventually reaches a steady st
that can be of two types: a disordered steady state, w
there is an equal average number of sites in each one o
three Potts states; and an ordered steady state characte
by the predominance of sites in one of the Potts states.

A convenient way to analyze the present model is throu
the use of the variables

xa5
1

N S (
i 51

N

d~s i ,a!2
N

3 D , ~5!

wherea assumes the values 1, 2, and 3 andd(x,y) is the
Kronecker delta. The property

x11x21x350

holds so that just two of them are independent.
It is useful also to introduce a set of homogeneous fu

tions I n(x1 ,x2 ,x3), of a given ordern, that are invariant
under the symmetry operationsR defined above. There is jus
one independent second-order invariant given by

I 25
1

3
~x1

21x2
21x3

2!. ~6!

The fourth-order invariant function is

I 45
1

3
~x1

41x2
41x3

4!. ~7!
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Again there is just one independent fourth-order invarian
The quantities of interest are the order parameterm de-

fined by

m5^AI 2&, ~8!

the susceptibilityx by

x5N$^I 2&2m2%, ~9!

and the reduced fourth-order cumulantU by

U512
^I 4&

3^I 2&
2

. ~10!

According to the theory of finite-size scaling, these qua
tities obey the following scaling forms:

mL~p!5L2b/nm̃~eL1/n!, ~11!

xL~p!5Lg/nx̃~eL1/n!, ~12!

and

UL~p!5Ũ~eL1/n!, ~13!

wheree5p2pc is the deviation ofp from its critical value,
and m̃(x), x̃(x), and Ũ(x) are universal functions. For a
infinite system these scaling forms give the behaviorm
;eb and x;e2g. The exponentn is associated to the cor
relation length which diverges asj;e2n. The cumulant
UL(p), defined in Eq.~10!, is expected to attain according t
Eq. ~13! a universal value at the critical point, which doe
not depend on the lattice size.

The simulation of the model is performed by applying t
local rules in a synchronized way. We have conside
square lattices and periodic boundary condition. Each sim
lation started with a configuration generated at random
averaged over several simulations where taken to get
final results. After a transient, which depends on the size
the system and of the value of parameterp, the system at-
tains a steady state. Our simulations show that the sys
exhibits a continuous phase transition with the orde
steady state (mÞ0) occurring at high values ofp. As p is
decreased, the transition takes place at a critical valuepc ,
and the system becomes disordered (m50) for p less than
pc .

Using the cumulant method@24#, the critical valuepc was
estimated. As we can see from Fig. 1, the curves ofUL
versusp, for different values ofL, intercept at the critical
point pc estimated to bepc50.88860.002. Using the scaling
relations for the order parameter and susceptibility, we h
estimated the ratiosb/n and g/n. We found b/n50.134
60.005 andg/n51.7460.02 , which are in agreement wit
the results for the~equilibrium! Potts model.

IV. SHORT-TIME BEHAVIOR

The short-time dynamic scaling relations@11# predict that
at the early stage of the evolution of a system, at critical
there is an initial increase of the order parameter that obe
power-law behavior with a universal exponent defined
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m(t);m0tu, wherem0 is the initial magnetization andu is a
dynamical critical exponent. Numericallyu can be found
from this relation by preparing the system in a disorde
state with a very small magnetization. The exponent sho
be evaluated by taking the limit asm0 goes to zero@13–18#.

This exponent can also be evaluated@21# by considering
the initial time evolution of the following correlation func
tion:

Q~ t !5^xa~ t !xa~0!& ~14!

with xa defined in Eq.~5!, and the average is over a distr
bution with zero correlation length and zero magnetizati
The following power-law increase is expected:

Q~ t !;tu. ~15!

In the present work we calculateu from this formula.
We also calculated the second moment of the order

rameter, given by

M25
3

4
^I 2&.

So, according to the short-time scaling relations, at the c
cal point, we may expect the following power-law behavio

M2~ t !;tz ~16!

with

z5
1

z S d2
2b

n D , ~17!

whered is the dimension of the lattice andz is the dynamical
exponent associated to the time correlation length.

We performed numerical simulations and analyzed
short-time behavior of the model. We used square latti
with sizesL59, 18, 36, and 72. The total number of ind
pendent initial configurations was of the order of 105. Each
initial configuration was generated by placing sites at stat
2, and 3 with equal probability and independent of ea
other. After that, we allow the system to evolve in time a

FIG. 1. The cumulantUL versusp for square lattices with linea
sizesL510, 20, and 40.
d
ld
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cording to the local rules with the parameterp fixed at its
critical value pc50.888 ~evaluated according to the proce
dure described in the preceding section!. We calculated the
value of the dynamical quantities whose average givesQ(t)
and M2(t) at each time step. The same procedure was
peated for a number of initial configurations from which t
averages were obtained at each time step.

Figure 2 shows the plot of the quantityQ(t), defined in
Eq. ~15!, against the timet, in a double-log scale.Q(t) in-
creases with time and has a power-law behavior that can
observed since the early times of the evolution even
small lattices. We see then that for the measurement ou,
finite-size effects are not important and the slope of strai
lines fitted to the data points gives the exponentu. We notice
that for lattice sizesL>18, the value ofu converges to a
definite value, namelyu50.09360.004.

In Fig. 3 we show the quantityM2(t) versus timet. In this
case there appears a nonuniversal behavior in the begin
times of the evolution. Discarding the first 20 initial tim
steps, we see thatM2(t) presents a power-law behavior, an

FIG. 2. Time evolution ofQ(t)/Q(0) for square lattices with
linear sizesL59, 18, 36, and 72~from bottom to top!.

FIG. 3. Second momentM2(t)/M2(0) as a function of time for
square lattices with linear sizesL59, 18, 36, and 72~from bottom
to top!.
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the slope of the straight lines fitted to the data points gives
the plot of lnM2(t) versust, the exponentz50.7660.01.
Using the valueb/n, obtained in the preceding section, o
the relationz5(d22b/n)/z, we obtainz52.2860.04. The
errors inz were calculated by propagating the errors inb/n
andz. This value ofz is in agreement with the values ofz,
for the three-state Potts model, obtained in@25#. So, the
short-time universal behavior of the present model is con
tent with the short-time universal behavior of the kine
three-state Potts model.

V. SUMMARY

We have investigated the critical behavior of a proba
listic cellular automaton that does not have microscopic
versibility and is defined by a dynamics that is invaria
under the symmetry operations of the point groupC3v . The
kinetic phase transition that takes place, as the externa
rameterp is varied, is a continuous phase transition from
disordered steady state at small values ofp to an ordered
steady state at high values ofp. We introduced a set of ho
J.

J

in

s-

-
-

t

a-

mogeneous functions that are invariant under the symm
operations of the groupC3v . From these functions we defin
the order parameter, the susceptibility, and the fourth-or
cumulant. The critical point and the static as well as t
short-time critical exponents were estimated by numer
simulations on regular square lattices of different sizes
using finite-size scaling theory. The values of the expone
are consistent with those of the two-dimensional three-s
Potts model.

The numerical results confirm that irreversible mod
with dynamics with the symmetries of the groupC3v and
defined in regular lattices are in the same universality cl
as the~equilibrium! three-state Potts model defined in th
same regular lattices. Local irreversibility plays an irreleva
role in the critical behavior and is not a property that mig
change the universality class of a given model. For the c
of Ising symmetry, such a principle has been demonstra
by showing the irrelevance of irreversible terms under
renormalization group near the upper critical dimension@1#.
For other symmetries, a similar renormalization-group a
proach could be used to demonstrate such a general
ciple.
.
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